Purification and Characterization of Gigantoxin-4, a New Actinoporin from the Sea Anemone Stichodactyla Gigantea
نویسندگان
چکیده
A new Cytolysin, termed as Gigantoxin-4, was isolated from the sea anemone Stichodactyla gigantea and found to be highly homologous with Cytolysin-3 (HMg III) from Heteractis magnifica, RTX-A from Radianthus macrodactylus, and Sticholysin-1 (St I) and Sticholysin-2 (St II) from Stichodactyla helianthus (homology 82%, 86%, 82% and 86% respectively). Its 20 N-terminal residues were identified and the full-length cDNA sequence was obtained by reverse transcription-polymerase chain reaction (RT-PCR). Multiple sequence alignments with other Cytolysins of the actinoporin family clearly indicated that Gigantoxin-4 belongs to this protein family. SDS-PAGE electrophoresis showed that this new actinoporin had a molecular mass of about 19 kDa, and possessed a high hemolytic activity to human erythrocytes (HA(50)= 40 ng/ml), which was inhibited by pre-incubation with sphingomyelin (SM) or SM-cholesterol mixtures. Our in vivo experiments showed that Gigantoxin-4 had wide toxicity to the rat cardiovascular system and the respiratory system. A concentration of 30 μg/kg Gigantoxin-4, i.v. produced a positive inotropic effect on the rat heart although final cardiovascular failure was inevitable, and 60 μg/kg Gigantoxin-4 caused respiratory arrest rapidly resulting in rat death. HE staining indicated pathological changes in various organs and tissues after i.v. administration of Gigantoxin-4.
منابع مشابه
TRPV1 Channel as New Target for Marine Toxins: Example of Gigantoxin I, a Sea Anemone Toxin Acting Via Modulation of the PLA2 Pathway.
Gigantoxin I, isolated from sea anemone Stichodactyla gigantea, was previously described as the first epidermal growth factor (EGF)-like toxin from natural origin. In this study, we discovered the interaction between the transient receptor potential vanilloid subtype I (TRPV1) channels and gigantoxin I. The TRPV1 channel is a non-selective cation channel involved in pain sensation and is descri...
متن کاملToxicity and Potential Pharmacological Activities in the Persian Gulf Venomous Sea Anemone, Stichodactyla haddoni
Numerous proteins and peptides in venomous marine animals are potentially active molecules with pharmacological properties. Particular condition of the Persian Gulf as a closed ecosystem is a good opportunity to study of biological activities and toxicity of venomous animals. In this study, Stichodactyla haddoni (S. haddoni), a sea anemone, selected to tracing for possible pharmaceutical agents...
متن کاملToxicity and Potential Pharmacological Activities in the Persian Gulf Venomous Sea Anemone, Stichodactyla haddoni
Numerous proteins and peptides in venomous marine animals are potentially active molecules with pharmacological properties. Particular condition of the Persian Gulf as a closed ecosystem is a good opportunity to study of biological activities and toxicity of venomous animals. In this study, Stichodactyla haddoni (S. haddoni), a sea anemone, selected to tracing for possible pharmaceutical agents...
متن کاملSpecific growth rate and mitotic index in dinoflagellate Symbiodinium sp. isolateed from sea anemone Stichodactyla haddoni
The cultivation techniques of dinoflagellates is often problematic due to their sensitivity to hydrodynamic (shear) stress. For this study, sea anemone was collected from the east coast of Hormuz Island. First, we extracted symbiotic dinoflagellate, Symbiodinium sp. from Stichodactylla haddoni using manually homogenization. After transferring to the laboratory, samples were cultured in differen...
متن کاملCrystallization and preliminary X-ray diffraction studies of the water-soluble state of the pore-forming toxin sticholysin II from the sea anemone Stichodactyla helianthus.
Sticholysin II (StnII) is a potent cytolytic protein produced by the sea anemone Stichodactyla helianthus. StnII belongs to the actinoporin family, a group of proteins which are characterized by their ability to spontaneously interact with biological membranes. The cytolytic character of these proteins is currently explained in terms of a molecular mechanism involving the formation of transmemb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011